Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let P and Q be statements. Prove the deMorgans laws:
(a) $\neg(P \wedge Q)=\neg P \vee \neg Q$
(b) $\neg(P \vee Q)=\neg P \wedge \neg Q$
2. Let P and Q be statements. Prove that $(P \Longrightarrow Q) \Longleftrightarrow(\neg P \vee Q)$.
3. Prove that $\sqrt{10}$ is irrational.
4. Prove there exists irrational numbers x and y such that x^{y} is rational.
5. Prove that for any $n \in \mathbb{N}$ the following holds:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

6. Let $n \in \mathbb{N}$. Prove that

$$
\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

7. Prove that for any $n \in \mathbb{N}, 2^{n}>n$ holds.
8. Assume that there is a polynomial, $p(n)$, of degree 3 such that

$$
p(n)=\sum_{k=0}^{n} k^{2}
$$

Find the formula for $p(n)$ and prove that the formula is correct.
9. Let P and Q be statements. Prove that the following statement is always true:

$$
[P \wedge(P \Rightarrow Q)] \Rightarrow Q
$$

