	Name:	
Math 3053 Section 01	Practice Exam 2	November 19, 2019

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let ${\cal P}$ and ${\cal Q}$ be statements. Prove the deMorgans laws:

(a)
$$\neg (P \land Q) = \neg P \lor \neg Q$$

(b) $\neg (P \lor Q) = \neg P \land \neg Q$

2. Let *P* and *Q* be statements. Prove that $(P \Longrightarrow Q) \iff (\neg P \lor Q)$.

3. Prove that $\sqrt{10}$ is irrational.

4. Prove there exists irrational numbers x and y such that x^y is rational.

5. Prove that for any $n \in \mathbb{N}$ the following holds:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

6. Let $n \in \mathbb{N}$. Prove that

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

7. Prove that for any $n \in \mathbb{N}$, $2^n > n$ holds.

8. Assume that there is a polynomial, p(n), of degree 3 such that

$$p(n) = \sum_{k=0}^{n} k^2$$

Find the formula for p(n) and prove that the formula is correct.

9. Let P and Q be statements. Prove that the following statement is always true:

$$[P \land (P \Rightarrow Q)] \Rightarrow Q$$